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Abstract. Inflow forecasting plays an essential role in reservoir management and operation. The impacts of climate change and 

human activities make accurate inflow prediction increasingly difficult, especially for longer lead times. In this study, a new 

hybrid inflow forecast framework with ERA-Interim reanalysis data as input, adopting gradient boosting regression trees (GBRT) 

and the maximum information coefficient (MIC) was developed for multi-step ahead daily inflow forecasting. Firstly, the ERA-

Interim reanalysis dataset provides enough information for the framework to discover inflow for longer lead times. Secondly, 10 

MIC can identify effective feature subset from massive features that significantly affects inflow so that the framework can avoid 

over-fitting, distinguish key attributes with unimportant ones and provide a concise understanding of inflow. Lastly, the GBRT is 

a prediction model in the form of an ensemble of decision trees and has a strong ability to capture nonlinear relationships 

between input and output in long lead times more fully. The Xiaowan hydropower station located in Yunnan Province, China is 

selected as the study area. Four evaluation criteria, the mean absolute error (MAE), the root mean square error (RMSE), the 15 

Nash-Sutcliffe efficiency coefficient (NSE) and the Pearson correlation coefficient (CORR), were used to evaluate the 

established models using historical daily inflow data (1/1/2017-31/12/2018). Performance of the presented framework was 

compared to that of artificial neural networks (ANN), support vector regression (SVR) and multiple linear regression (MLR) 

models. The experimental results indicate that the developed method generally performs better than other models and 

significantly improves the accuracy of inflow forecasting at lead times of 5-10 days. The reanalysis data also enhances the 20 

accuracy of inflow forecasting except for forecasts that are one-day ahead. 

Keywords Inflow forecasting, Gradient boosting, Regression trees, Maximum information coefficient, ERA-Interim 

1 Introduction 

Reliable and accurate inflow forecasting 1-10 days in advance is significant for efficient utilization of water resources, reservoir 

operation and flood control, especially in areas with concentrated rainfall. Rainfall in southern China is usually concentrated for 25 

several days at a time due to strong convective weather, such as typhoons. Low accuracy inflow predictions can easily cause the 

failure of power stations to make reasonable power generation plans 7-10 days ahead of disaster events and lead to unnecessary 

water abandonment and even substantial economic losses. Fig. 1 shows the loss of electric quantity due to discarded water 

(LEQDW) in Yunnan and Sichuan Provinces, China from 2011 to 2016. The total amount of LEQDW in Yunnan and Sichuan 

Provinces increased from 1.5 billion kWh to 47.9 billion kWh from 2011 to 2016, with an average annual growth rate of 99.9%. 30 

In recent years, due to the increased number of hydropower station and installed hydropower capacity, the problem of discarding 

water caused by inaccurate inflow forecasting is becoming increasingly serious, which has also had a negative impact on the 

development of hydropower in China. 

The main challenges in inflow forecasting caused by climate change and human activities at present are low accuracy, especially 

for longer lead times (Badrzadeh et al., 2013; El-Shafie et al., 2007). To address the problem, a variety of models and approaches 35 
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have been developed. These approaches can be divided into three categories: statistical methods (Valipour et al., 2013), physical 

methods (Duan et al., 1992; Wang et al., 2011; Robertson et al., 2013), and machine learning methods (Chau et al., 2005; Liu et 

al., 2015; Rajaee et al., 2019; Zhang et al., 2018). Each method has its own conditions and scope of application. Statistical 

methods are usually based on historical inflow records and mainly include use of the autoregressive model, the autoregressive 

moving average (ARMA) model and the autoregressive integrated moving average (ARIMA) model (Lin et al., 2006), which 40 

assume that the inflow series is stationary, and the relationship between input and output is simple. However, real inflow series 

are complex, nonlinear and chaotic disturbances (Dhanya and Kumar, 2011), making it difficult to obtain high-accuracy 

predictions using statistical models. Physical methods are implemented using theories of inflow generation and confluence, 

which have clear mechanisms. These methods can reflect the characteristics of catchment but are very strict with initial 

conditions and input data (Bennett et al., 2016). Meanwhile, these methods are used for flood forecasting have a shorter lead time 45 

and cannot be used to acquire long-term forecasting results due to input uncertainty. Machine learning methods, having a strong 

ability to handle the nonlinear relationship between input and output and recently shown excellent performance in inflow 

prediction, are widely used for medium and long-term inflow forecasts. In particular, several studies had shown that artificial 

neural networks (ANN) (Rasouli et al., 2012; Cheng et al., 2015; El-Shafie and Noureldin, 2011) and support vector regression 

(SVR) (Tongal and Booij, 2018; Luo et al., 2019) are the two powerful models for inflow predicting. However, these models still 50 

have some inherent disadvantages. For example, ANN is prone to being trapped by local minima, and both ANN and SVR suffer 

from over-fitting problems and reduced generalizing performance. Recent years, gradient boosting regression trees(GBRT) 

(Fienen et al., 2018; Friedman, 2001), a nonparametric machine learning method based on a boosting strategy and decision trees, 

was developed and had been used in traffic (Zhan et al., 2019) and environmental (Wei et al., 2019) field and proved to alleviate 

these problems mentioned above. Thus, GBRT were selected for daily inflow prediction with a lead time of 1-10 days in this 55 

paper. Compared with ANN and SVR, GBRT also has two other advantages. Firstly, GBRT can rank features according to their 

contribution to model scores, which is of great significance for reducing the complexity of the model. Secondly, GBRT is a 

white box model and can be easily interpreted. To the best of our knowledge, GBRT has not been used for daily inflow 

prediction with a lead time of 1-10 days before. For comparison purposes, ANN and SVR have also been employed to forecast 

daily inflow, and multiple linear regression (MLR) was used as a benchmark. 60 

In addition to forecasting models, a vital reason why many approaches cannot attain higher accuracy for inflow predictions is 

that inflow is influenced by various factors (Yang et al., 2019), such as rainfall, temperature, humidity, pressure, dew point, etc. 

Thus, it is very difficult to select appropriate features for inflow forecasting. Current feature selection methods for inflow 

forecasting mainly include the correlation coefficient method (Badrzadeh et al., 2013; Siqueira et al., 2018; Pal et al., 2013), the 

stepwise selection method (Wei, 2016), and the Gamma test method (Chang and Tsai, 2016), etc. These methods have limited 65 

ability for capturing nonlinear relationships or tend to need much more computation resource. In order to select effective input 

factors accurately and quickly, the maximum information coefficient (MIC) (Reshef et al., 2011), was used to select input factors 

for inflow forecasting. MIC is a robust measure of the degree of correlation between two variables and has attracted a lot 

attention from academia (Zhao et al., 2013; Ge et al., 2016; Lyu et al., 2017; Sun et al., 2018). In addition, sufficient potential 

input factors are the prerequisite for obtaining reliable and accurate prediction results and it is not enough to use only antecedent 70 

inflow values as the input of the model. To enhance the accuracy of inflow forecasting and acquiring a longer lead time, 

increasing amounts of meteorological forecasting data are being used for inflow forecasting (Lima et al., 2017; Fan et al., 2015; 

Rasouli et al., 2012). However, with extended lead times, the errors of forecast data continuously increase because the variables 

obtained by numerical weather prediction (NWP) system are also affected by complex factors (Mehr et al., 2019). Moreover, 

with the continuous improvement of forecasting systems, it is difficult to obtain consistent, long series of forecasting data 75 
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(Verkade et al., 2013). To mitigate these problems, the reanalysis data generated by ECMWF (ERA-Interim) (Dee et al., 2011), 

which was proved to be one of the best methods for reanalysis of data describing atmospheric circulation and elements (Kishore 

et al., 2011), has been used as an input. The reanalysis data are the result of assimilating observed data with forecast data, which 

has less error than observed data and forecast data. ERA-Interim shows the results of a global climate reanalysis from 1979 to 

date, which are produced by a fixed version of a NWP system. The fixed version ensures there are no spurious trends caused by 80 

an evolving NWP system. Therefore, meteorological reanalysis data satisfies the need for long sequences of consistent data and 

have been used for the prediction of wind speeds (Stopa and Cheung, 2014) and solar radiation (Ghimire et al., 2019; Linares-

Rodríguez et al., 2011).  

This study aims to provide a reliable inflow forecasting framework with a longer lead time for daily inflow forecasting. The 

framework adopts the ERA-Interim reanalysis dataset as the input which ensured ample information was supply to depict inflow. 85 

MIC was used to select appropriate features so that avoiding over-fitting and waste of computing resources caused by feature 

redundancy. GBRT, which is robust to outliers and has strong non-linear fitting ability, was used as the prediction model to 

improve inflow forecasting accuracy of longer lead times. 

This paper is organized as follows: Section 2 describes a case study and collected data, Section 3 introduces the theory and 

process of methods used, including MIC and GBRT. Section 4 shows the results and discussion of the data, followed by the 90 

conclusions in Section 5. 

2 Data 

2.1 Study area and collected data 

The Xiaowan Hydropower Station in the lower reaches of the Lancang River was chosen as the study site (Fig. 2). The Lancang 

River is approximately 2000 km long and has a drainage area of 113300 km
2
 above the Xiaowan Hydropower Station. The 95 

Lancang River originates in the Tibetan Plateau and runs through China, Myanmar, Laos, Thailand, Cambodia, and Vietnam and 

is also known as the Mekong River. The major source of water flowing into the Lancang River in China comes from melting 

snow on the Tibetan plateau ( Commission Mekong River, 2005).  

We collected EAR-Interim reanalysis dataset, observed daily inflow and rainfall data for Xiaowan for 8 years (January 2011 to 

December 2018). Fig. 3 depicts the daily inflow series. The data from January 2011 to December 2014 (1461 days, 100 

approximately 50% of the whole dataset), from January 2015 to December 2016 (731 days, approximately 25% of the whole 

dataset) and from January 2017 to December 2018 (730 days, approximately 25% of the whole dataset) were used for training, 

validation and testing, respectively. The reanalysis dataset can be downloaded from https://apps.ecmwf.int/datasets/data/ 

interim-full-daily/levtype=sfc/ and is provided every six hours on a spatial grid size of 0.75° × 0.75°. According to the physical 

meaning of the variables, the near-surface 79 variables from the reanalysis data are considered as potential selected predictors for 105 

inflow forecasting, which include the total precipitation (tp), the 2 meter temperature (t2m), the total column water (tcw), etc.. 

2.2 Data scaling and feature selection 

Feature scaling is necessary for machine learning methods and all features were scaled to the range between 0 and 1 before 

taking part in the calculation, as follows:  

original min

scale

max min

x x
x

x x





 

 (1) 
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where 
scalex  and originalx  indicate the scaled and original data, respectively and 

maxx  and  
minx  represent the maximum and 110 

minimum of inflow series, respectively.  

Reasonable selection of input variables can accelerate the calculation speed and improve the prediction accuracy of the model by 

removing redundant feature information and reducing the dimensions of the features. If too many features are selected, model 

will become very complex, which will cause trouble when adjusting parameters, resulting in over-fitting and difficult 

convergence. Moreover, natural patterns in the data will be blurred by noise (Zhao et al., 2013). On the other hand, if too few 115 

features are chosen, there will be not enough information for inflow forecasting. After eliminating invalid variables, MIC was 

employed to select inputs from 79 potential predictors from reanalysis data and observed inflow and rainfall lags are identified 

by autocorrelation function (ACF). 

2 Methodology 

3.1 Feature selection via maximal information coefficient 120 

The calculation of MIC is based on concepts of the mutual information (MI) (Kinney and Atwal, 2014). For a random variable X, 

such as observed inflow, the entropy of X is defined as 

( ) ( ) log ( )
x X

H X p x p x


 
 

 
(2) 

where ( )p x  is the probability density function of X = x. Furthermore, for another random variable Y, such as observed rainfall, 

the conditional entropy of X given Y may be evaluated from the following expression  

( | ) ( , ) log ( | )
x X y Y

H X Y p x y p x y
 

 
 

 
(3) 

where ( | )H X Y  is the uncertainty of X given knowledge, ( , )p x y and ( | )p x y  are the joint probability density and the 125 

conditional probability of X = x and Y = y, respectively. The reduction of the original uncertainty of X, due to the knowledge of 

Y, is called the MI (Amorocho and Espildora, 1973; Chapman, 1986), defined by  

( , )
( , ) ( ) ( | ) ( , ) log

( ) ( )x X y Y

p x y
MI X Y H X H X Y p x y

p x p y 

  
 

 
(4) 

The calculation of MIC is divided into three steps. Consider given a dataset D, including variable X and Y with a sample size n. 

Firstly, drawing scatter plots of X and Y and drawing grids for partitioning which is called an x-by-y grid. Let D|G denote the 

distribution of D divided by one of x-by-y grids as G. 
* ( , , ) max ( | )MI D x y MI D G ，where ( | )MI D G  is the mutual 130 

information of D|G. Secondly, characteristic matrix is defined as  

*

,

( , , )
( )

log(min( , ))
x y

MI D X Y
M D

x y


 

 
(5) 

Lastly, MIC is introduced as the maximum value of characteristic matrix, that is, 
( )

,( ) max ( )
xy B n

x yMIC D M D


 , where B(n) is the 

upper bound of the grid size need to be considered. 

We perform feature selection in two steps via MIC. First, compute MIC value of each reanalysis factors and observed inflow. 

Then, sort features based on MIC in a descending order and select the top k features according to the set threshold. The selected k 135 

features from reanalysis data are used as part of input to the model. 
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3.2 Gradient boosting regression trees 

Gradient boosting regression trees is an ensemble model which mainly includes two algorithms: decision tree algorithm and the 

boosting algorithm. The decision tree robust to outliers is used as a primitive model and boosting algorithm as integration rule is 

used to improve inflow forecasting accuracy. 140 

3.3.1 The decision tree 

The decision tree in this paper refers to decision tree learning used in computer science, which is one of the predictive modeling 

approaches used in machine learning. A decision tree consists of branch nodes (the tree structure) and leaf nodes (the tree output).  

Supposing a training dataset is given in a feature space with n features and each feature with N samples, {(X1, y1), (X2, y2), …, (XN, 

yN )} (Xi = (x1, x2, …, xn), i =1, 2, …, N). In the input space where the training set is located, each region is recursively divided into 145 

two subregions and the output value of each subregion is used to construct a binary decision tree. The top-down cyclic branch 

learning of the decision tree adopts a greedy algorithm where each branch node only cares about its own objective function. By 

traversing all features and all segmentation points of each feature, the best feature j and segmentation points s can be found by 

minimizing square loss:  

1 2
1 2

2 2

1 2
,

( , ) ( , )

min min ( ) min ( )
i i

i i
j s c c

X R j s X R j s

y c y c
 

 
   

 
 

 

 (6) 

where 150 

 

 

( )

1

( )

2

( , ) | , 1,2, ,

( , ) | , 1,2, ,

j

i

j

i

R i s X x s i N

R i s X x s i N

 

  
 

  (7) 

( , )

1
( 1,2)

i m

m i

X R j sm

c y m
N 

 
 

 (8) 

yi is the observed value and R1(j, s) and R2(j, s) are the results of partitioning. c1 and c2 are output values of R1(j, s) and R2(j, s), 

respectively. Fig. 4 shows an example of a decision tree model with a max depth and number of leaf nodes of 3 and 5, 

respectively. If the threshold of loss is set as the stopping condition of the decision tree, it will easily lead to over-fitting 

problems. Hence, we set the following parameters to alleviate the over-fitting problem of the decision tree model: the maximum 

depth of the tree, the minimum number of samples required to split an internal node, the minimum number of samples required 155 

to be at a leaf node and the number of leaf nodes. These parameters are also the ones used for optimization when using the 

decision tree. 

3.3.2 The boosting algorithm 

The idea of gradient boosting originated in the observation by Breiman (Breiman, 1997) and can be interpreted as an 

optimization algorithm based on a suitable cost function. Explicit regression gradient boosting algorithms were subsequently 160 

developed (Friedman, 2001; Mason et al., 2000). The boosting algorithm used is described here. Supposing a training dataset 

with N sample {(X1, y1), (X2, y2), · · ·, (XN , yN)}, a square loss function is used to train the decision tree: 

2

1

( , ( )) ( ( ))
N

i

i

L y f X y f X


 
 

 (9) 
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 The core of the GBRT algorithm is the iterative process of training the decision with a residual method. The iterative training 

process of GBRT with M decision trees is as follows: 

1) Initialization  0

1

( ) arg min ,
N

c i

i

f x L y c


   . 165 

2) For m-th (m=1, 2, ..., M) decision trees: 

a) Operating i-th (i=1, 2, ..., N) sample points. Using the negative gradient of the loss function to replace the residual in the 

current model 

1( ) ( )

( , ( ))

( )
m

i i

mi

i f x f x

L y f x
r

f x


 
  

 
. 

b) Fitting a regression tree with   ,i mix r . The i-th regression tree with 
mtR  (t = 1, 2, ..., T) as its corresponding leaf node region 

is obtained, where t is the number of leaf nodes of regression. 170 

c) For each leaf region t = 1, 2, ..., T, and the best fitting value is calculated by 
1arg min ( , ( ) )

i mt

mt i m i
c x R

c L y f x c



  . 

d) The fitting results are updated by adding the obtained fitting values to the previous ones using 

1

1

( ) ( ) ( )
T

mt i m i mt i mt

t

f x f x c I x R



   . 

3) Finally, a strong learning method is obtained 
1 1

ˆ( ) ( ) ( )
M T

i M i mt i mt

m t

f x f x c I x R
 

   . 

According to the above introduction to GBRT, the parameters of the GBRT can be divided into two categories: boosting 175 

parameters and decision tree parameters. The boosting parameters include the learning rate and the number of weak learners 

(n_estimators). The learning rate setting is used for reducing the gradient step. The learning rate influences the overall time of 

training, and the smaller the value is, the more iterations are required for training. There are four tree parameters: 

max_leaf_nodes, min_samples_leaf, min_samples_split and max_depth. Hence, GBRT has six parameters control model 

complexity (Fienen et al., 2018), five of which we adjusted for tuning, except for learning rate determined by trial in advance. 180 

3.3 Evaluation criteria of the models 

It is critical to carefully define the meaning of performance and to evaluate the performance on the basis of the forecasting and 

fitted values of the model compared with historical data. The root mean square error (RMSE) and mean absolute error (MAE) 

are the most commonly used criteria to assess model performance and are calculated using Eq. (10) and Eq. (11), respectively.  

2

1

1 ˆ( )
n

i i

i

RMSE Q Q
n 

 
 

 (10) 

1

1 ˆ
n

i i

i

MAE Q Q
n 

 
 

 (11) 

where ˆ
iQ  and 

iQ  are the inflow estimation and observed value at time i, respectively and n is the number of samples. The RMSE 185 

is more sensitive to extremes in sample sets and thus it was used to evaluate the model’s ability to simulate flood peaks. 

The Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) is commonly for evaluating the performance of 

hydrological models and it is one of the best performance metrics for reflecting the overall fit of a hydrograph. The NSE is 

calculated using Eq. (12) 
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2

1

2

1

ˆ( )

1

( )

n

i i

i

n

i

i

Q Q

NSE

Q Q







 






 

 (12) 

where Q   is the mean of the observed values. An NSE = 1 means the model is perfect and an NSE < 0 reflects that the model 190 

forecasts are a worse estimation than the mean value of observed values.  

The Pearson correlation coefficient (CORR) is a good measurement of the average error which is calculated according to Eq. 

(13). 

1

2 2

1 1

ˆ ˆ( )( )

ˆ ˆ( ) ( )

n

i i

i

n n

i i

i i

Q Q Q Q

CORR

Q Q Q Q



 

 



 



 
 

 (13) 

where Q̂  is the mean of the estimation values. The range of the CORR is between 0 and 1 and values close to 1 demonstrate a 

perfect estimation result. 195 

3.4 Overview of framework 

Fig.5 illustrates the overall structure of framework presented. This structure consists of two major models: GBRT and GBRT-

MIC. 

In GBRT, we measure the relevance of   different lags observed inflow and rainfall with observed inflow at the time of forecast 

via autocorrelation function (ACF) (Badrzadeh et al., 2013) and select appropriate lags as predictors of model by the set 200 

threshold. Then, data preprocessing and scaling were carried out for selected predictors. Next, dividing the dataset into train set, 

validation set, and test set according to the length of each data set specified in advance (in Section 2.2). A grid search algorithm 

was guided to optimization model parameters by evaluation of validation set for each lead time (Chicco and Davide, 2017). 

Lastly, prediction results are evaluated based on test set. Compared with GBRT, GBRT-MIC adds reanalysis data which were 

selected via MIC (in Section 3.1) as the input of the model. Moreover, GBRT-MIC also calculates the importance of features 205 

according to the prediction results and ranks the features. The model structures of GBRT and GBRT-MIC are as follows: 

1 1 1 1
ˆ ( ; , ,..., , , ,..., ) ( 1,2,...,10)

II
tt T t t t p t t t qQ f Q Q Q R R R T       

 
(14) 

1 2

1 1 1 1
ˆ ( ; , ,..., , , ,..., , , ,..., ) ( 1,2,...,10)

IIII k
tt T t t t p t t t q t t tQ f Q Q Q R R R E E E T         (15) 

where ˆ I

t TQ 
 and ˆ II

t TQ 
 are the forecasted value of GBRT and GBRT-MIC at the lead time T of current time t, respectively. 

I

t  

and 
II

t  are parameters of GBRT and GBRT-MIC at the lead time T of current  time t, respectively. p and q are lags of observed 

inflow and rainfall determined via ACF, respectively. tE  is the features from reanalysis data at the current time t and k is the 

number of features from reanalysis data determined via MIC. 210 

4. Experimental results and discussion 

In order to compare with GBRT-MIC, the ANN-MIC, SVR-MIC and MLR-MIC, obtained by replacing GBRT in the framework 

with ANN, SVR and MLR, respectively, were also employed for inflow forecasting with lead times of 1-10 days. As mentioned 
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earlier, the RMSE, MAE, NSE and CORR of each model were calculated to compare with the performance of models based on 

the test set. We also explored the feature importance based on the GBRT-MIC model. 215 

4.1 Feature selection 

Table 1 shows the ACF of a lag of 1-10 days of inflow and rainfall. The results show the ACF decreases as the lag order 

increases. Considering the problems of over-fitting and computational time caused by large amounts of input data, thresholds of 

inflow and rainfall are set as 0.931, 0.226, respectively and threshold of MIC is set as 0.625. And thus a lag of one day of 10 

predictors from the reanalysis data and a lag of 1-3 days of inflow and rainfall were selected as the model inputs, that is k=10, 220 

p=3 and q=3. Simultaneously, according to the causes of inflow, the total precipitation was also selected as a predictor.  

Finally, a total of 17 variables including 6 observed variables and 11 reanalysis variables were selected as the model inputs 

(Table 2). No. 7 to 17 are reanalysis variables and the range of MIC of the reanalysis variables is 0.625 to 0.853 except for the 

total precipitation. No. 7 to 10, No. 15 and No. 16 are variables related to solar radiation or temperature that are used to represent 

the melting of snow. Albedo (No. 7) is a measure of the reflectivity of the Earth's surface. Typically, the highest Albedo is found 225 

on snow and ice, followed by land and the lowest in the ocean. Albedo has the highest correlation (negative correlation) with 

inflow in terms of MIC. Soil temperature level 3 (No. 8) is the temperature of the soil in layer 3 (28-100 cm, the surface is at 0 

cm). The temperature of the snow layer (No. 15) gives the temperature of the snow layer from the ground to the snow-air 

interface. Surface thermal radiation downwards (No. 16) is the amount of thermal (also known as longwave or terrestrial) 

radiation emitted by the atmosphere and clouds that reaches the Earth's surface. Total column water (No. 11) is the sum of water 230 

vapor, liquid water, cloud ice, rain and snow in a column extending from the surface of the Earth to the top of the atmosphere. 

The total column water vapor (No. 12) is only the total amount of water vapor, which is a fraction of the total column water. 

Runoff (No. 13) is a measure of the availability of water in the soil, including at the surface (surface runoff) and under the 

ground (subsurface runoff). Volumetric soil water layer 3 (No. 14) is the volume of water in soil layer 3. Total precipitation (No. 

17) is the accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. In summary, all the 235 

selected predictors are interpretable and have a good physical connection with inflow. 

4.2 Hyperparameter optimization 

For machine learning methods, hyperparameters are parameters that are set before starting the learning process, rather than 

parameters obtained through training. In order to improve the learning performance, it is imperative to tune the hyperparameters 

of models. Grid searching was employed to tune the hyperparameters of GBRT, GBRT-MIC, ANN-MIC and Bayesian 240 

optimization (Snoek et al., 2012) was employed to tune the hyperparameters of SVR-MIC. All computations of this paper are 

performed in the version 3.7.10 of Python, using the scikit-learn package (Pedregosa et al., 2011). 

Besides the training algorithms and the number of hidden layers of the ANN, there are also two parameters controlling the model 

structure which need to be adjusted. A range of 2-20 neurons and four activation functions (Table 3) are selected by grid 

searching. To alleviate the influence of random initialization of weights, 50 ANN-MIC models were trained for each 245 

combination of activation and the number of hidden neurons. We obtained activation functions and the number of hidden 

neurons by selecting the optimal median of the MAE of the validation set for each lead time. The results of the trials show 

identity is most robust activation function (Fig. 6) and less number of nodes is inclined to obtain lower error for except for relu. 

The optimal combinations of number of hidden layer and activation function for each lead time are listed in Table 4. It is found 

that the optimal number of neurons is 2 or 3 and the optimal activation function is either logistic or tanh. 250 
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For SVR, there are three parameters that need to be optimized, the regularization parameter C, the loss function tolerance 

threshold  and the parameter of RBF γ. The search space of , C and γ are [0, 2], [e
−5

, e
5
], [e

−13
, e

−1
], respectively. The tuning 

parameters for each lead time are listed in Table 4 and the range of C,  and γ are 0.51 to 144.48, 0.0004 to 0.0085 and 0.0012 

to 0.2150, respectively. 

According to trial and error, the learning rate of GBRT and GBRT-MIC are all decided to be 0.01. For parameters max_depth, 255 

max_leaf_nodes, min_samples_leaf values between 3 and 9 with an increment of 2 were evaluated, for min_samples_split 

values between 10 and 50 with an increment of 10 were evaluated, and n_estimators between 200 and 1200 with an increment of 

50 were evaluated. We developed 13440 models for each lead time and Table 5 lists the parameters selected for GBRT and 

GBRT-MIC. 

4.3 Inputs comparison 260 

Fig. 7 illustrates the relationship between performance indices and lead times of GBRT and GBRT-MIC in the test set (2017-

2018). It is obvious that the use of reanalysis data selected by MIC as model inputs makes a great improvement on the GBRT 

forecasting. For Fig. 7(a), the MAE of GBRT-MIC decreases from 171 to 167, a decrease of 2.4% for two-day-ahead forecasting 

and decreases from 270 to 241, a decrease increasing to 10.7% for ten-day-ahead forecasting compared with GBRT. For Fig. 

7(b), the RMSE of GBRT-MIC achieves 4.4% and 9.6% reduction for two and ten-day-ahead forecasting, respectively, 265 

compared with GBRT. For Figs. 7(c) and 7(d), the NSE and CORR of GBRT-MIC increase by 1.1%, 1.1% for two-day-ahead 

forecasting and 5.2%, 2.3% for ten-day-ahead forecasting, respectively. Thus, the above analysis indicates the improvements 

increase as the lead time increases and reanalysis data significantly improves the accuracy of inflow prediction for longer lead 

times in terms of all four different evaluation measures in the test set. 

Fig. 8(a) shows the ten-day-ahead forecasted inflow of GBRT-MIC and GBRT versus the observed inflow in the test set. The 270 

slope of fitting curve of GBRT-MIC and GBRT are 0.78 and 0.72, respectively, which demonstrates that GBRT-MIC can obtain 

more accuracy inflow forecasting than GBRT. Fig. 8(b) illustrates the distribution of the forecast errors of GBRT and GBRT-

MIC. The results show the prediction error of two models approximate to normal distribution. It demonstrates that the prediction 

error contains less information that is not extracted by the model and more errors of forecasted inflow concentrate at 0 around by 

GBRT-MIC than GBRT. Fig. 8(c) provides the ten-day-ahead forecasted results of GBRT-MIC and GBRT in the test set. It can 275 

be seen that forecast error of peak value of GBRT-MIC significantly decreases than GBRT. This reveals that the problem of 

inaccurate peak flow prediction arisen in in areas with concentrated rainfall for the GBRT model could be mitigated by 

incorporating the reanalysis data identified by MIC as model inputs. 

4.4 Model comparison 

GBRT-MIC, SVR-MIC, ANN-MIC with obtained optimal model parameters were employed for inflow forecasting of one to ten-280 

day-ahead. Summarized results for train, validation and test set are presented in Table 6, Table 7 and Table 8, respectively. 

Notably, the ANN-MIC models were trained 50 times for each lead time, and the median of the performance indices are listed in 

these tables. It is clear from Table 6 that the GBRT-MIC are more efficient in the train set than other models at lead times of 1-

10 days, and machine learning models obtain better simulation results than MLR-MIC. However, GBRT-MIC did not always 

perform best for the test set at lead times of 1-10 days. From Table 8, we notice that SVR-MIC outperforms the other models for 285 

a lead time of one day. Furthermore, ANN-MIC performs best in terms of RMSE and NSE at lead times of 2-4 days, and GBRT-

MIC performs best for longer lead times (5-10 days). At a lead time of ten days, the NSE of GBRT-MIC even reached 0.8084.  
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The relationship between performance indices and lead times of these four models in the test set (2017-2018) is presented in Fig. 

9. The results indicate the performance of these four models decreases (higher MAE and RMSE, and lower CORR and NSE) as 

the lead time increases and the four models perform equally well for one- to four-day-ahead forecasting, whereas significant 290 

differences among their performances are found as the forecasting lead time exceeds four days. It clearly indicates that the 

GBRT produce much higher CORR and NSE, and lower MAE and RMSE than the other three models for five to ten-day-ahead 

forecasting except that the SVR perform best in terms of MAE for ten-day-ahead forecasting. As mentioned earlier (Section 4.3), 

the prediction error of these four models approximate to normal distribution and according to (Chai and R., 2014), the RMSE is 

more appropriate for representing model performance than MAE when the error distribution is expected to be Gaussian. Thus, 295 

GBRT-MIC preforms best for five to ten-day-ahead forecasting. 

4.5 Feature importance 

A benefit of using gradient boosting is that after the boosted trees are constructed, relative importance scores for each feature can 

be acquired to estimate the contribution of each feature to inflow forecasting. Fig. 10 shows the feature importance based on 

GBRT-MIC for lead times of one and ten days. The lagged observed values (e.g., 1tQ   and 2tQ  ) are more important for shorter 300 

lead times (Fig. 10(a)), which demonstrates that the observed values are essential for inflow forecasting of shorter lead times. 

The features (e.g., 103tstl   and 102 td m  ) from the reanalysis data have a high relative importance for longer lead times (Fig. 

10(b)). Based on the analysis of the concepts of 103tstl   and 102 td m   (Section 4.1), we infer that the temperature near the ground 

effects the inflow by affecting the melting of snow which is consistent with the fact that the Lancang River is a snow-melt river. 

Meanwhile, it is found that the reanalysis data provides important information for inflow forecasting at longer lead times. 305 

5. Conclusion 

In this study, GBRT-MIC are employed to make inflow forecasts for lead times of 1-10 days and ANN-MIC, SVR-MIC and 

MLR-MIC are developed to compare with GBRT-MIC. The reanalysis data selected by MIC, the antecedent inflow and the 

rainfall records selected by ACF are used as predictors to drive the models. These models are compared using four evaluation 

criteria, the RMSE, MAE, NSE and CORR. It is shown that GBRT-MIC, ANN-MIC and SVR-MIC outperform MLR-MIC at 310 

lead times of 1-10 days, and GBRT-MIC performs best at lead times of 5-10 days. 

According to compare the forecasted results of GBRT and GBRT-MIC, we concluded that GBRT-MIC could be used for more 

accurate and reliable inflow forecasting for 1-10 day lead times, and the use of reanalysis data selected by MIC as model inputs 

makes a great improvement on the GBRT forecasting, especially for 5-10 day lead times. In addition, the feature importance 

achieved by GBRT-MIC demonstrates that soil temperature and dewpoint temperature near the ground significantly affects 315 

inflow for longer lead times.  

In summary, the developed framework that integrates reanalysis data, MIC and GBRT can well perform inflow forecasting for 

lead times of 1-10 days. The results of this study are of significance to assist power stations in making power generation plans 7-

10 days in advance in order to reduce LEQDW and flood disasters. 
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Figure 1: Loss of electric quantity due to discarded water (LEQDW).
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Figure 2: Location of the Xiaowan hydropower station. 450 
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Figure 3: Daily inflow data of the Xiaowan hydropower station. 

 

 

 455 

Figure 4: The structure of decision tree model. 
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Figure 5: Overview of the framework. 
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Figure 6: Sensitivity of the number of nodes and activation function in the hidden layer on the MAE of ANN-MIC, the shadow part is 460 
95% confidence interval obtained by bootstrap of 50 trials. (a) One-day-ahead (b) Ten-day-ahead. 
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Figure 7: Performance of GBRT and GBRT-MIC for the test set (2017-2018) in term of four indices (a) MAE (b) RMSE (c) NSE (d) 

CORR. 
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 465 

Figure 8: Ten-day-ahead inflow forecasts of the GBRT and GBRT-MIC for test set (2017-2018, 730 days) (a) Observed versus 

forecasted inflow. (b) The histogram of predicting error of test set (c) Comparison of the observed and forecasted inflow.
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Figure 9: Performance of GBRT-MIC, SVR-MIC, ANN-MIC and MLR-MIC for the test set (2017-2018) in term of four indices. 

Bootstrap 95% confidence intervals of ANN-MIC for 50 trials. (a) MAE (b) RMSE (c) NSE (d) CORR. 470 
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Figure 10: Feature importance for GBRT-MIC (a) One-day-ahead (b) Ten-day-ahead.
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Table 1  

ACF of Xiaowan daily inflow and rainfall (2011-2014). 

ACF t t − 1 t − 2 t − 3 t − 4 t − 5 t − 6 t − 7 t − 8 t − 9 

tQ  0.974 0.950 0.931 0.914 0.899 0.883 0.870 0.858 0.847 0.838 

tR  0.504 0.273 0.226 0.233 0.195 0.174 0.153 0.170 0.171 0.174 

 475 

Table 2  

List of inputs of GBRT-MIC. There are of two types, observed and reanalysis variables. The reanalysis variables are available four 

time a day at 00:00 UTC, 06:00 UTC, 12:00 UTC and 18:00 UTC. The cumulative variable (e.g., Total column water) is the sum of four 

periods and the instantaneous variable (e.g. 2 meter dewpoint temperature) is the mean of four periods. 

No.   Variable Index Unit MIC Type 

1 Inflow at day t tQ  3 1m s   - Obs.. 

2 Inflow at day t − 1 1tQ 
 3 1m s   - Obs. 

3 Inflow at day t – 2 2tQ 
 3 1m s  - Obs. 

4 Rainfall at day t tR  mm - Obs. 

5 Rainfall at day t – 1 1tR   mm - Obs. 

6 Rainfall at day t – 2 2tR 
 mm - Obs. 

7 Forecast albedo tfal   - 0.853 ERA-I 

8 Soil temperature level 3 3tstl   K 0.814 ERA-I 

9 2 meter dewpoint temperature 2 td m  K 0.721 ERA-I 

10 Minimum temperature at 2 meters 2 tmn t   K 0.660 ERA-I 

11 Total column water ttcw   
2kg m  0.660 ERA-I 

12 Total column water vapour ttcwv   
2kg m  0.659 ERA-I 

13 Runoff tro   m 0.653 ERA-I 

14 Volumetric soil water layer 3 3tswvl   3 3m m  0.637 ERA-I 

15 Temperature of snow layer ttsn   K 0.631 ERA-I 

16 Surface thermal radiation downwards tstrd   2J m  0.625 ERA-I 

17 Total precipitation ttp   m 0.391 ERA-I 

https://doi.org/10.5194/hess-2019-610
Preprint. Discussion started: 13 December 2019
c© Author(s) 2019. CC BY 4.0 License.



25 

 

Table 3  480 

Four commonly used activation functions. 

Name Functional expression 

logistic 
1

( )
1 x

f x
e




 

tanh ( )
x x

x x

e e
f x

e e









 

identity ( )f x x  

relu ( ) (0, )f x max x  

 

Table 4  

Tuning parameters of ANN-MIC and SVR-MIC. 

Model Tuning parameter 1 2 3 4 5 6 7 8 9 10 

ANN-MIC Structure  

Activate function 
17-3-1 

tanh 

17-2-1 

logistic 

17-2-2 

logistic 

17-2-3 

tanh 

17-2-4 

logistic 

17-2-5 

tanh 

17-2-6 

logistic 

17-2-7 

logistic 

17-2-8 

logistic 

17-2-9 

tanh 

SVR-MIC C 8.9693 7.6987 53.1206 9.8590 44.2134 81.4581 120.2356 0.2587 144.4810 0.5105 

 epsilon 0.0030 0.0007 0.0028 0.0066 0.0006 0.0015 0.0004 0.0012 0.0027 0.0085 

 gamma 0.0265 0.0201 0.0037 0.0120 0.0051 0.0012 0.0088 0.2150 0.0067 0.1815 

 485 

Table 5  

Tuning parameters of GBRT and GBRT-MIC. 

Tuning parameter Tuning range 
Optimal parameters (the lead times of 1-10 days) 

GBRT GBRT-MIC 

max_leaf_nodes [3,5,7,9] 7,7,3,5,9,3,7,9,7,3 3,3,3,7,3,7,7,9,5,9 

min_samples_leaf [3,5,7,9] 9,5,9,5,5,5,7,3,3,3 9,9,9,7,5,5,5,5,5,7  

max_depth [3,5,7,9] 3,3,9,9,9,3,3,5,9,5 9,9,7,9,9,5,7,5,7,7 

min_samples_split [10,20,30,40,50] 30,10,40,50,10,20,50,50,50,40 50,10,20,10,10,20,30,50,10,50 

n_estimators [200, 250, …, 1200] 600,600,450,450,550,500,500,550,600,600 1150,550,350,350,450,350,350,400,500,500 
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Table 6  

Performance indices of the train set. 

Indice Model 1 2 3 4 5 6 7 8 9 10 

MAE GBRT-MIC 70 98 126 141 150 167 173 172 170 169 

 SVR-MIC 86 116 138 151 161 177 176 182 192 192 

 ANN-MIC 90 119 139 153 163 174 181 187 194 198 

 MLR-MIC 92 124 146 162 173 185 195 205 213 219 

RMSE GBRT-MIC 103 152 197 224 248 272 285 288 286 283 

 SVR-MIC 139 195 240 267 285 314 318 329 345 344 

 ANN-MIC 138 190 226 248 270 287 307 319 331 337 

 MLR-MIC 142 195 233 259 281 305 322 337 348 359 

NSE GBRT-MIC 0.9844 0.9659 0.9426 0.9257 0.9090 0.8908 0.8804 0.8772 0.8791 0.8816 

 SVR-MIC 0.9715 0.9436 0.9149 0.8947 0.8802 0.8540 0.8508 0.8402 0.8245 0.8249 

 ANN-MIC 0.9718 0.9466 0.9248 0.9091 0.8924 0.8785 0.8610 0.8495 0.8385 0.8324 

 MLR-MIC 0.9703 0.9438 0.9196 0.9009 0.8833 0.8629 0.8472 0.8324 0.8206 0.8100 

CORR GBRT-MIC 0.9923 0.9832 0.9728 0.9645 0.9548 0.9468 0.9416 0.9391 0.9397 0.9417 

 SVR-MIC 0.9859 0.9722 0.9592 0.9501 0.9420 0.9291 0.9257 0.9209 0.9139 0.9131 

 ANN-MIC 0.9858 0.9731 0.9620 0.9538 0.9452 0.9378 0.9286 0.9225 0.9165 0.9131 

 MLR-MIC 0.9851 0.9717 0.9594 0.9498 0.9406 0.9299 0.9214 0.9134 0.9070 0.9013 

None : The bold numbers represent the values of performance criterion for the best fitted  models. 490 
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Table 7  

Performance indices of the validation set 

Indice Model 1 2 3 4 5 6 7 8 9 10 

MAE GBRT-MIC 96 127 153 170 177 190 194 194 196 189 

 SVR-MIC 120 149 169 183 193 201 202 200 206 207 

 ANN-MIC 122 154 174 188 199 206 214 215 218 216 

 MLR-MIC 127 161 185 202 212 220 228 233 236 240 

RMSE GBRT-MIC 132 188 230 254 266 286 294 296 293 276 

 SVR-MIC 178 240 274 294 308 326 325 326 329 330 

 ANN-MIC 177 240 271 290 308 317 332 337 337 333 

 MLR-MIC 184 247 281 304 319 332 342 346 349 353 

NSE GBRT-MIC 0.9669 0.9324 0.8991 0.8766 0.8647 0.8440 0.8348 0.8325 0.8364 0.8544 

 SVR-MIC 0.9395 0.8898 0.8570 0.8352 0.8181 0.7969 0.7982 0.7965 0.7926 0.7922 

 ANN-MIC 0.9398 0.8900 0.8594 0.8398 0.8185 0.8075 0.7893 0.7830 0.7824 0.7876 

 MLR-MIC 0.9349 0.8832 0.8486 0.8236 0.8052 0.7889 0.7766 0.7708 0.7666 0.7620 

CORR GBRT-MIC 0.9835 0.9661 0.9493 0.9376 0.9311 0.9203 0.9154 0.9140 0.9163 0.9260 

 SVR-MIC 0.9693 0.9434 0.9257 0.9139 0.9046 0.8927 0.8939 0.8928 0.8903 0.8906 

 ANN-MIC 0.9697 0.9444 0.9289 0.9185 0.9081 0.9015 0.8925 0.8895 0.8890 0.8912 

 MLR-MIC 0.9673 0.9412 0.9238 0.9112 0.9018 0.8935 0.8871 0.8839 0.8818 0.8798 

None : The bold numbers represent the values of performance criterion for the best fitted models.  
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Table 8  

Performance indices of the test set. 495 

Indice Model 1 2 3 4 5 6 7 8 9 10 

MAE GBRT-MIC 138 167 186 196 205 214 221 224 235 242 

 SVR-MIC 130 160.5 180.6 192 210 221 227 226 237 239 

 ANN-MIC 131 161.4 181.4 199 214 221 228 235 242 247 

 MLR-MIC 135 169 191 211 228 242 246 254 260 266 

RMSE GBRT-MIC 216 261 296 314 326 343 357 364 376 395 

 SVR-MIC 196.7 256 303 332 354 383 388 385 411 403 

 ANN-MIC 197.1 253 290 318 339 354 368 386 398 406 

 MLR-MIC 203 264 307 338 363 383.7 397 409 419 426 

NSE GBRT-MIC 0.9426 0.9161 0.8924 0.8787 0.8693 0.8550 0.8430 0.8372 0.8264 0.8084 

 SVR-MIC 0.9524 0.9190 0.8870 0.8641 0.8454 0.8193 0.8142 0.8175 0.7923 0.8001 

 ANN-MIC 0.9522 0.9211 0.8966 0.8756 0.8582 0.8457 0.8337 0.8165 0.8052 0.7967 

 MLR-MIC 0.9494 0.9143 0.8836 0.8590 0.8378 0.8188 0.8056 0.7940 0.7840 0.7764 

CORR GBRT-MIC 0.9710 0.9575 0.9465 0.9395 0.9335 0.9272 0.9207 0.9169 0.9102 0.9002 

 SVR-MIC 0.9760 0.9591 0.9437 0.9327 0.9221 0.9093 0.9044 0.9079 0.8951 0.8987 

 ANN-MIC 0.9758 0.9598 0.9470 0.9358 0.9265 0.9197 0.9132 0.9037 0.8974 0.8926 

 MLR-MIC 0.9744 0.9562 0.9401 0.9269 0.9155 0.9050 0.8979 0.8915 0.8859 0.8817 

None : The bold numbers represent the values of performance criterion for the best fitted models. 
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